23 A 26 SETEMBRO DE 2015
Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Perfil de Ácidos Graxos da Gordura do Leite de Vacas F1 Holandês X Zebu Alimentadas com Casca de Banana

Gabriela Duarte Oliveira Leite, Mariane Duarte Oliveira leite

Introdução

A casca de banana é um importante resíduo da agroindústria brasileira, entretanto, apresenta um bom valor nutricional, especialmente em relação à sua composição de ácidos graxos, com alto percentual de polinsaturados. Nesse sentido, objetivou-se avaliar os efeitos da inclusão da casca de banana seca ao sol, com ou sem adição de agentes químicos durante o processo de secagem, sobre o perfil de ácidos graxos do leite de vacas F1 Holandês x Zebu.

Material e métodos

O experimento foi conduzido na Fazenda Experimental da Universidade Estadual de Montes Claros - UNIMONTES, localizada no Município de Janaúba/MG. Foram utilizadas oito vacas F1 Holandês x Zebu, com produção média de 16,84 kg de leite corrigido para 3,5 % de gordura dia-1 e aproximadamente 80 dias de lactação ao início do experimento. O delineamento experimental adotado foram dois quadrados latino 4 X 4, composto, cada um, de quatro animais, quatro tratamentos e quatro períodos experimentais. Foram utilizadas quatro dietas experimentais, sendo: dieta convencional com silagem de sorgo sem a inclusão da casca de banana (controle); dieta com inclusão da casca de banana seca ao sol com 2% de calcário em substituição de 20 % da silagem de sorgo; dieta com inclusão da casca de banana seca ao sol com 2% de óxido de cálcio em substituição de 20 % da silagem de sorgo; a substituição da silagem de sorgo pela casca de banana foi feita com base na matéria seca. O fornecimento das dietas foi ajustado de acordo com as sobras, mantendo a relação volumoso:concentrado com base na matéria seca (MS) de 75:25, de forma que as sobras representassem 10 % da quantidade fornecida. A composição química das dietas encontra-se na tabela 1.

Os animais foram ordenhados em ordenha mecânica, com bezerro ao pé, duas vezes ao dia, às 08h e às 15h sendo feita a pesagem do leite em cada ordenha. As amostras de leite de cada animal foram coletadas duas vezes ao dia, nos últimos quatro dias de cada período, sendo feito um *pool* das amostras do leite da ordenha da manhã e da tarde, proporcionalmente à quantidade produzida de manhã e à tarde. Após a ordenha de cada vaca, o leite foi homogeneizado e as amostra coletadas. Posteriormente, essas amostras foram analisadas quanto ao perfil de ácidos graxos da gordura por cromatografia gasosa. Os dados foram submetidos à análise de variância e quando o teste de F foi significativo, as médias dos tratamentos foram comparadas pelo teste de Scott-Knott, ao nível de 5% de probabilidade.

Resultados e Discussão

Verificou-se maiores concentrações de ácido butírico, ácido vacênico (C18:1 trans) e ácido linoléico conjugado CLA (C18: 2 cis-9 trans-11) na gordura do leite das vacas alimentadas com as dietas contendo casca de banana em relação à dieta sem casca. O aumento do ácido vacênico advém da biohidrogenação ruminal dos AGPI, principalmente do ácido linoléico. A casca de banana possui percentual considerável deste ácido graxo. Pela avaliação química da casca utilizada neste experimento observou-se uma concentração de 13,7 mg/g de gordura de ácido linoleico. O aumento do teor do ácido vacênico contribui para melhoria do valor nutricional do leite, pois trata-se do principal precursor do CLA cis-9, trans-11 na glândula mamária dos ruminantes. Este resultado é muito importante porque o aumento do isômero C18:2 cis-9, trans-11, melhora as propriedades nutracêuticas do leite. Para os demais ácidos graxos não houve diferença entre as dietas estudadas.

23 A 26 SETEMBRO DE 2015
Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Conclusão

A inclusão de casca de banana na dieta de vacas F1 Holandês x Zebu, com produção média de 16,84 Kg de leite corrigido para 3,5% de gordura dia-1 influenciou o perfil de ácidos graxos do leite, com aumento do teor de ácido linoléico conjugado.

Agradecimentos

Á FAPEMIG pelo apoio financeiro e ao CNPq e CAPES pela concessão de bolsas.

Referências

[1] NATIONAL RESEARCH COUNCIL – NRC. **NutrientRequirementsofDairyCattle**.7 ed. Washigton: NationalAcademy Press, 450p. 2001.

Tabela 1. Composição química das dietas, na base da matéria seca (%).

	Dietas Experimentais (% MS)					
Composição	°SS	^c SS+Casca de Banana s/ aditivo	^c SS + Casca de Banana c/ calcário	^c SS+Casca de Banana c/ cal virgem		
MatériaSeca	30,43	30,78	31,79	30,92		
Proteína Bruta	11,33	11,42	10,90	10,89		
Extrato Etéreo	2,42	3,77	3,33	3,62		
Carboidratos Totais	77,35	74,44	74,52	74,17		
Carboidratos Não Fibrosos	17,48	16,97	17,50	17,76		
Fibra em Detergente Neutron	59,86	57,48	57,71	56,40		
^a FDNcp	54,15	52,23	52,32	52,31		
Fibra em Detergente Ácido	31,00	31,83	30,47	29,58		
Lignina	8,11	10,21	10,90	10,59		
^b Nutrientes Digestíveis Totais	63,15	64,16	64,43	64,02		

^aFibra em detergente neutro corrigida para cinza e proteína. ^bEstimado pelas equações do [1]. ^cSilagem de sorgo.

23 A 26 SETEMBRO DE 2015 Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Tabala 2	Darfil de ácidos	gravas da gardura da	laita da vacas E1	l Holandâs V Zahu alin	nentadas com casca de banana.

Componentes	SS ^a	SS ^a +Casca	SSa + Casca c/	SSa + Casca c/		CV (%)
_		Pura	calcário	óxido cálcio	Médias	
Σ Saturados	76,00a	74,88a	74,88a	73,63a	74,85	3,47
C4:0	2,67b	3,01a	2,87a	2,93a	2,87	7,90
C6:0	1,94a	1,76a	2,09a	1,96a	1,94	20,25
C8:0	1,28a	1,44a	1,45a	1,37a	1,39	13,20
C10:0	2,94a	3,20a	3,31a	3,0a	3,11	17,97
C10:1	0,36a	0,37a	0,38a	0,36a	0,37	17,12
C11:0	0,14a	0,11a	0,13a	0,11a	0,12	33,84
C12:0	3,64a	3,91a	4,05a	3,63a	3,81	16,87
C13:0 ISSO	0,03a	0,03a	0,03a	0,03a	0,03	21,03
C13:0 ANTEISO	0,12a	0,13a	0,12a	0,12a	0,12	19,03
C13:00	0,13a	0,10a	0,12a	0,12a	0,12	26,17
C14:0 ISSO	0,14a	0,16a	0,15a	0,16a	0,15	16,03
C14:0	11,36a	12,46a	12,48a	11,90a	12,05	10,84
C15:0 ISSO	0,23a	0,26a	0,26a	0,29a	0,26	14,81
C15:0 ANTEISO	0,39a	0,46a	0,43a	0,45a	0,43	13,75
C15:0	1,11a	1,17a	1,16a	1,13a	1,14	11,42
C16:0	38,92a	36,08a	36,42a	36,60a	37,01	10,64
C16:0 IS0	0,22a	0,25a	0,24a	0,25a	0,24	16,19
C17:00 ISSO	0,31a	0,31a	0,32a	0,37a	0,33	9,69
C17:00	0,67a	0,67a	0,66a	0,67a	0,67	4,88
C18:00	9,73a	8,91a	8,44a	8,39a	8,87	13,41
C20:0	0,09a	0,09a	0,08a	0,09a	0,09	12,69
C22:0	0,06a	0,05a	0,06a	0,06a	0,06	15,17
C23:0	0,02a	0,02a	0,02a	0,03a	0,02	13,82
Σ Monoinsaturados	21,25a	22,50a	22,38a	23,25a	22,35	10,44
C10:1	1,06a	1,18a	1,18a	1,19 ^a	1,15	38,39
C18:1 TRANS	1,12b	1,47a	1,46a	1,70a	1,44	18,30
C18:1 C9	15,20a	15,76a	15,74a	16,28a	15,75	11,45
C18:1 C11	0,80a	0,73a	0,74a	0,67a	0,74	26,41
C18:1 C12	0,29a	0,26a	0,26a	0,26a	0,27	29,43
C18:1 C12	0,27a 0,07a	0,26a 0,06a	0,20a 0,07a	0,20a 0,07a	0,07	45,14
C18:1 T16	0,10a	0,10a	0,09a	0,10a	0,10	27,25
C18:1 C15	0,10a 0,07a	0,10a 0,07a	0,05a	0,06a	0,06	28,45
C20:1	0,13a	0,13a	0,14a	0,15a	0,14	18,14
C20:1 C24:1	0,15a 0,05a	0,05a	0,05a	0,05a	0,05	19,3
Σ Poliinsaturados	1,88a	2,00a	2,25a	2,25a	2,10	11,10
C18:2 C9 C12	1,34a	1,32a	1,42a	1,45a	1,38	12,95
C18:3 n6	0,00a	0,01a	0,00a	0,00a	0,00	64,11
C18:3 n3	0,10a	0,11a	0,11a	0,12a	0,11	17,68
C18:2 C9T11 (CLA)	0,38c	0,52b	0,51b	0,64a	0,51	15,62
C20:5	0,01a	0,01a	0,01a	0,01a	0,01	35,82
C20:3 n6	0,05a	0,04a	0,05a	0,05a	0,05	32,46
C20:4 n6	0,05a	0,05a	0,06a	0,04a	0,05	41,61
C20:5 n3	0,02a	0,02a	0,02a	0,02a	0,02	25,84
C22:5	0,05a	0,04a	0,05a	0,05a	0,05	17,62

Médias seguidas de letras distintas diferem entre si pelo teste de Scott-Knott a 5 % de significância;

^aSilagem de Sorgo