

ESTUDO DO COMPORTAMENTO DE SISTEMAS DE PÊNDULOS ATRAVÉS DE MÉTODOS NUMÉRICOS

Victor Felipe Arthur Coutinho Ladeia, André Luiz Pimenta Maia

Introdução

Os pêndulos são sistemas mecânicos compostos elementarmente de uma haste de comprimento *l* qualquer e massa desprezível, com uma extremidade fixa e a outra dotada de uma concentração de massa. Trata-se de um sistema que apresenta como principais características: dificuldade de construção relativamente baixa e representação de um movimento oscilatório.

Do ponto de vista matemático, a observação do movimento de oscilação pendular e o estudo dos resultados advindos dessa observação podem ser utilizados de modo a se criar um modelo que venha a justificar o comportamento do sistema como um todo. A equação advinda desses tratamentos é chamada equação de Mathieu, e é utilizada em diversas áreas do conhecimento científico que abordam comportamentos oscilatórios como a Medicina [1], Engenharia [2] e Física experimental [3].

O modelo de oscilação em si pode ser abordado tanto do ponto de vista numérico como analítico, sendo ambas as abordagens mais ou menos eficientes dada à quantidade de resultados necessários para se obter um resultado estatisticamente conciso.

O objetivo deste trabalho é analisar o comportamento dos pêndulos simples e invertido por meio de métodos numéricos.

Materiais e métodos

Para a resolução do problema do pêndulo, a equação que descreve seu movimento, obtida da equação de Mathieu, foi resolvida através de um método numérico de valor inicial, o Runge-Kutta [4] de quarta ordem devido ao interesse em se obter uma melhor exatidão sem um grande esforço computacional. Trata-se de um método de passo simples, que utiliza apenas a solução anterior. Sua forma geral é:

 $y_{i+1} = y_i + h\phi(x_i, y_i; h), \text{ onde } \phi(x, y; h) = b_1k_1 + b_2k_2 + \dots b_sk_s, \text{ com}$ (1) $k_1 = f(x, y), k_2 = f(x + c_2h, y + a_{21}hk_1), k_3 = f(x + c_3h, y + h(a_{31}k_1 + a_{32}k_2))$

 $k_s = f(x + c_sh, y + h(a_{s1}k_1 + a_{s2}k_2 + ... + a_{s,s-1}k_{s-1}))$

Obtém-se então, a partir da equação um, um sistema linear com 11 equações e 13 incógnitas, possibilitando encontrar os valores das constantes a, b e c. Essas constantes são particulares de cada método. As constantes do método de Runge-Kutta de quarta ordem estão na tabela 1.

A plataforma escolhida para implementação do algoritmo foi a do Scilab. O Scilab é um software de código aberto disponível para Windows, Linux e IOS que tem a capacidade de gerar, analisar e operar dados além de disponibilizá-los em tabelas ou gráficos.

Resultados e Discussão

Durante o desenvolvimento do projeto foi feita a modelagem do sistema do pêndulo simples. As equações diferenciais foram obtidas analiticamente através da mecânica lagrangiana.

$$d^2\theta/dt^2 + (g/l)sen\theta = 0$$
⁽²⁾

A equação 2 é a equação do pêndulo simples. Para um dos termos da equação dois, $sen(\theta)$, é possível realizar uma operação de linearização, considerando-se que para ângulos pequenos $sen(\theta) \approx \theta$. Dessa forma, substituindo-se $sen(\theta)$ por θ , foi possível obter uma equação linearizada para o pêndulo simples.

Foi desenvolvido um algoritmo no Scilab contendo o método de resolução numérica Runge-Kutta de 4ª ordem. Os parâmetros de entrada do algoritmo foram: "a" e "b", que são respectivamente o limite inferior e superior do tempo;

Apoio financeiro: IFNMG.

"m", que é o número de subintervalos que serão tratados nesse limite; " y_{1i} " e " y_{2i} ,", que são respectivamente o valor inicial da velocidade e o valor inicial do ângulo θ além de "l" representando o tamanho do pêndulo.

O algoritmo resolveu tanto a equação linearizada como a não linearizada. Foram atribuídos aos parâmetros os seguintes valores: a = 0; b = 1,6 s; m = 16; $y_{1i} = 0$; $y_{2i} = \pi/4$ rad; l = 0,61 m. Esses valores foram utilizados para as equações linearizadas e não linearizadas. O gráfico da Figura 1 foi gerado a partir dos resultados do algoritmo.

Nota-se na Figura 1 que as curvas linearizadas e não linearizadas praticamente se sobrepõem. A diferença entre as curvas é tão pequena que não é possível notá-la no gráfico. Essa diferença entre as duas abordagens só é perceptível na Tabela 2, onde os valores da velocidade angular só se diferenciam na terceira casa decimal.

O mesmo processo de obtenção da equação foi realizado para o pêndulo invertido de forma analítica. O algoritmo empregado na resolução da equação não linearizada do pêndulo invertido sofreu algumas adaptações e seus parâmetros de entrada, além dos escolhidos na simulação do pêndulo simples, foram a amplitude "A" e a frequência "w". O algoritmo foi executado com os seguintes valores para w: 10 Hz, 25 Hz e 40 Hz. Aos demais parâmetros, foram escolhidos os seguintes valores: A = 0,01; a = 0; b = 20 s; m = 180; y_{1i} = 0; y_{2i} = $\pi/4$ rad; l = 0,3. O gráfico obtido para o pêndulo invertido está na Figura 2.

Para certos valores da frequência, mantendo-se a amplitude constante, o pêndulo invertido ficará estável. Este comportamento não é observado nos gráficos B e C da figura 2. Já o gráfico A apresenta indícios de periodicidade, o que implicaria em uma estabilidade.

Conclusões

Para pêndulos invertidos existe uma faixa de frequência, a uma amplitude fixa, em que o sistema fica em equilíbrio, tornando seu movimento periódico. Essa periodicidade só foi observada no gráfico A da figura 2, que apresenta o comportamento do pêndulo invertido em uma frequência de 10 Hz. Esse valor indica que pode haver estabilidade em frequências mais baixas.

A linearização de uma equação pode dar resultados satisfatórios se uma consideração válida for levada em conta. Em trabalho e investigações que não necessitam de alta exatidão, a linearização pode ser aplicada. Neste trabalho o erro se apresentava a partir da terceira casa decimal.

Agradecimentos

Ao IFNMG, pela oportunidade de fazer o curso de Engenharia Química e por fomentar esta pesquisa. E o professor Marcos Aurélio Duarte Carvalho, pela orientação, apoio e confiança.

Referências

[1] CARROLL, S. P.; OWEN, J. S.; HUSSEIN, M. F. M. Experimental identification of the lateral human-structure interaction mechanism and assessment of the invertedpendulum biomechanical model. Journal of Sound and Vibration, v. 333, n. 22, p. 5865–5884, out. 2014.

[2] ANH, N. D. et al. Vibration control of an inverted pendulum type structure by passive mass - spring-pendulum dynamic vibration absorber. v. 307, p. 187-201, 2007.

[3] YURCHENKO, D.; NAESS, A.; ALEVRAS, P. Pendulum 's rotational motion governed by a stochastic Mathieu equation. **Probabilistic Engineering Mechanics**, v. 31, p. 12–18, 2013.

[4] FILHO, F. F. C.. Algoritmos numéricos. 2. Ed. Rio de Janeiro:LTC, 2010.

Tabela 1. Constantes do método clássico de Runge-Kutta de quarta ordem na notação de Butcher.

Tabela 2. Comparação entre ângulo e velocidade angular para os cálculos linearizado e não linearizado para o pêndulo simples.

Tempo	Cálculo Não Linearizado		Cálculo Linearizado	
	Ângulo	Velocidade Angular	Ângulo	Velocidade Angular
0	0.7853982	0	0,7853982	0
0,2	0.5461934	0,1407719	0,5457841	0,1407544
0,4	-0.0237688	0,1959626	-0,0268521	0,1956244
0,6	-0.5794170	0,1322374	-0,5831040	0,1311298
0,8	-0.7839456	-0,0118991	-0,7835621	-0,0133765
1,0	-0.5109695	-0,1487875	-0,5059124	-0,1497208
1,2	0.0712203	-0,1952423	0,0804308	-0,1947097
1,4	0.6105160	-0,1232151	0,6176974	-0,1208922
1,6	0.7795936	0,0237541	0,7780623	0,0266904

Figura 1. Comportamento do pendulo simples através variação do ângulo θ em função do tempo t.

Figura 2: Comportamento do pendulo invertido através variação do ângulo θ em função do tempo t nas frequências de 10 Hz (A), 25 Hz (B), 40 (C).