23 A 26 SETEMBRO DE 2015
Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

# A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO









## Perfil fitoquímico e atividade alelopática de extratos aquosos de Banisteriopsis pubipetala

Mariane Maia Sepulveda, Dario Alves de Oliveira, Vanessa de Andrade Royo

## Introdução

Uma espécie vegetal pode provocar interferência benéfica ou maléfica no desempenho de outras espécies, por meio da produção de substâncias que exercem mudanças sobre outros organismos <sup>[1]</sup>. A alelopatia pode ser, definida como um processo de produção de compostos por meio do metabolismo secundário de plantas, micro-organismos e fungos, que são liberados no meio ambiente e interferem no crescimento e/ou desenvolvimento de sistemas biológicos<sup>[2]</sup>.

Os aleloquímicos ocorrem em todas as partes da planta e todos os órgãos da mesma possuem capacidade para armazená-los, porém, a quantidade e a rota pelos quais são liberados para o meio ambiente, se diferem de espécie para espécie. As concentrações em tecidos como raízes, folhas e frutos, dependem de diversos fatores como a nutrição do solo, temperatura e pluviosidade. A produção dos aleloquímicos é de suma importância, pois se caracteriza como autodefesa por meio da liberação de compostos por diferentes rotas, como volatilização, exsudação das raízes, lixiviação e decomposição [3].

A identificação dos aleloquímicos produzidos se faz necessária, uma vez que fitotoxinas naturais e derivados sintéticos podem ser utilizados como herbicidas com a possibilidade de serem mais específicos e portanto menos destrutivos ao meio ambiente<sup>[4]</sup>.

Considerando as informações supracitadas e a importância de valorizar os recursos genéticos do semiárido, o objetivo do presente trabalho foi estudar o perfil fitoquímico e avaliar o potencial alelopático de extratos aquosos de *Banisteriopsis pubipetala*.

#### Material e Métodos

Análises fitoquímicas

As análises dos compostos secundários taninos, saponinas, flavonoides, esteroides e alcaloides do material vegetal foram realizadas de acordo com protocolos descritos por MOUCO et al. (2003), com modificações.

Avaliação da atividade alelopática

Para a obtenção dos extratos aquosos, foram utilizadas 125 gramas de folhas de plantas adultas, foram trituradas em liquidificador com a presença de 500mL de água destilada e os extratos brutos filtrados. Após a filtragem, os extratos aquosos obtidos foram diluídos e obtidos as concentrações de 12,5%; 25%; 50%; 75% e 100%, e a água destilada foi utilizada como grupo controle positivo.

Os extratos aquosos com cada uma das concentrações supracitadas mais o controle positivo foram aplicadas em cinco repetições de 10 sementes de alface. As sementes foram acondicionadas em placas de Petri, revestidas com papel filtro umedecido com 5mL de extrato e colocadas em germinador na temperatura alternada de 25-30°C sob fotoperíodo de 12 horas (BRASIL, 2009).

Foram realizadas contagens diárias a partir do quarto dia durante sete dias e consideradas germinadas as sementes que apresentaram mais de 2,0mm de protusão da raiz primária. As variáveis analisadas foram: a primeira contagem (no quarto dia) e última contagem do teste de germinação no último dia; índice de velocidade de germinação (IVG) de acordo com Maguire (1962) e velocidade de germinação em dias (VG). Os dados obtidos foram submetidos à ANOVAcomparados pelo teste de Tukey a 5% de propabilidade, com utilização do programa Minitab 16.

#### Resultados e Discussão

## 1. Perfil fitoquimico

23 A 26 SETEMBRO DE 2015
Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

## A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO









Os compostos secundários encontrados nos extratos foram taninos, flavonoides, saponinas, esteroides e alcaloides. Ao grupo dos alcaloides são atribuídas diversas propriedades farmacológicas, como analgésicas, antioxidantes, relaxantes e antitumorais, o que despertou grande interesse por fontes desses compostos<sup>[5]</sup>. Outros grupos com variadas atividades biológicas são os flavonoides e taninos. No que diz respeito ao uso terapêutico, os taninos são conhecidos por terem atividades antioxidantes *in vivo* e *ex vivo*, e hipocolesterolêmica<sup>[6]</sup>. Quanto aos flavonoides, estão associadas á funções anti-inflamatória e anticancerígena<sup>[7]</sup>. São compostos também muito estudados em *Banisteriopsis*, e tiveram nos testes, significativas mudanças de coloração e presença do precipitado, corroborando com os estudos em *Banisteriopsis anisandra* e *Banisteriopsis variabilis*<sup>[8]</sup>.

#### 2. Atividade alelopática

Na avaliação da germinação das sementes de alface, foi observado com a aplicação de água destilada (grupo controle), o desenvolvimento de raiz primária e primórdios foliares. Com a aplicação de extrato aquoso na concentração de 12,5% as sementes apresentaram dificuldade na germinação e apenas raiz primária. Com presença de extrato aquoso na concentração de 25%, foi observada pequena protusão da raiz e presença de escurecimento das sementes. Com extrato aquoso na concentração de 50% foi observada protusão da raiz que atingiu tamanho de 1 milímetro e também o escurecimento das sementes.

Foi observado que as sementes não germinaram nos tratamentos em que foram utilizadas concentrações maiores que 75% dos extratos aquosos, fato que evidencia o potencial alelopático da espécie.

#### Conclusão

Extratos aquosos de folhas de *Banisteriopsis pubipetala* apresentam em condições laboratoriais atividade alelopática. Os compostos secundários encontrados nos extratos foram taninos, flavonoides, saponinas, esteroides e alcaloides. Estudos futuros sobre a caracterização fitoquímica devem ser realizados, para melhor compreensão das possíveis interferências na germinação e elucidação dos aleloquímicos presentes na espécie.

### Referências

- [1] LOBO, Lívia T. et al . Potencial alelopático de catequinas de Tachigali myrmecophyla (leguminosae). Quím. Nova, São Paulo , v. 31, n. 3, 2008.
- [2] CARMO, Flávia Maria da Silva; BORGES, Eduardo Euclydes de Lima e; TAKAKI, Massanori. Alelopatia de extratos aquosos de canela-sassafrás (Ocotea odorifera (Vell.) Rohwer). Acta Bot. Bras., São Paulo, v. 21, n. 3, Sept. 2007.
- [3] MACÍAS, F. A., MOLINILLO, J. M. G., VARELA, R. M. & GALINDO, J.C.G. 2007. Allelpathy a natural alternative for weed control. *Pest Management Science*, 63. 327-348.
- [4] BORELLA, Junior; PASTORINI, Lindamir Hernandez. Influência alelopática de Phytolacca dioica L. na germinação e crescimento inicial de tomate e picão-preto. **Biotemas**, [S.l.], v. 22, n. 3, p. 67-75, jun. 2011. ISSN 2175-7925.
- [5] CUI, W. et al. Potencial cancer chemopreventive activity of simple isoqinolines, 1 benziylisoquinolines, and protoberberines. Phytochemistry, v.67, p.70-79, 2006.
- [6] TIAN, Y. et al. High molecular weight persimmon tannin is a potent antioxidant both *ex vivo* and *in vivo*. Food ResearchInternational, v.45, p.26-30, 2012.
- [7] KSOURI, W.M. et al. LC–ESI-TOF–MS identification of bioactive secondary metabolites involved in the antioxidant, anti-inflammatory and anticancer activities of the edible halophyte *Zygophyllum album* Desf. Food Chemistry, v.139, p.1073-1080, 2013.
- [8] KUMAR, S e PANDEY, A. K, "Chemistry and Biological Activities of Flavonoids: An Overview," The Scientific World Journal, vol. 2013, p16, 2013.

**23** A **26 SETEMBRO** DE 2015 Campus Universitário Professor Darcy Ribeiro

ISSN 1806-549X

A HUMANIZAÇÃO NA CIÊNCIA, TECNOLOGIA E INOVAÇÃO









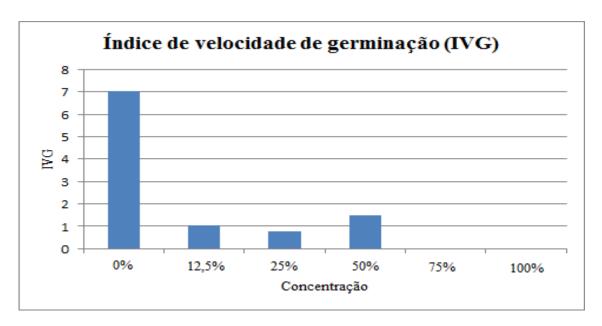



Figura 1. Índice de velocidade de germinação das sementes de alface frente á diferentes concentrações dos extratos.